DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families
نویسندگان
چکیده
Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite's sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens.
منابع مشابه
Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملVariation in the gene encoding a major merozoite surface antigen of the human malaria parasite Plasmodium falciparum.
Plasmodium falciparum merozoites have a variable surface protein of about 195,000 molecular weight which may be involved in strain-specific immunity. We have cloned and sequenced a major portion of the gene encoding this antigen from the CAMP strain and have located sites of preferred mung bean nuclease cleavage around the gene. These sites depend on reaction conditions, but at 40% formamide an...
متن کاملPositive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum.
DNA sequences of alleles at the merozoite surface antigen-1 (MSA-1) gene locus of the malaria parasite Plasmodium falciparum show evidence of repeated past recombination events between alleles. These include both (1) nonreciprocal recombination events that have homogenized certain gene regions among alleles and (2) reciprocal recombination events that have combined allelic segments with diverge...
متن کاملA Plasmodium Whole-Genome Synteny Map: Indels and Synteny Breakpoints as Foci for Species-Specific Genes
Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs) revealed a core set of 4,500 Plasmodium orthologs located i...
متن کاملDNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation.
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo ant...
متن کامل